Fourier Series

Instructor: Ali R. Moshgi

Let \(f(t) \) be a piecewise continuous function of period \(2\pi \) which is defined for all \(t \). Then the Fourier Series of \(f(t) \) is:

\[
f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nt + b_n \sin nt \right).
\]

Here we have 3 constants: \(a_0, a_n, b_n \).

Where

\[
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, dt
\]

Note that \(a_0 = 0 \) if \(f(t) \) is an odd function.

\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt, \quad n = 1, 2, 3, \ldots
\]

Note that \(a_n = 0 \) if \(f(t) \) is an odd function.

\[
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt, \quad n = 1, 2, 3, \ldots
\]

Note that \(b_n = 0 \) if \(f(t) \) is an even function.

The above equations are Euler formulas.

In order to find \(a_0 \) do the following integration and solve for \(a_0 \).

\[
\int_{-\pi}^{\pi} f(t) \, dt = \int_{-\pi}^{\pi} a_0 \, dt + \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} \left(a_m \cos mt + b_m \sin mt \right) \, dt
\]

\[
\int_{-\pi}^{\pi} f(t) \, dt = 2\pi a_0 \implies a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, dt
\]

Note that \(\sum_{m=1}^{\infty} \int_{-\pi}^{\pi} \left(a_m \cos mt + b_m \sin mt \right) \, dt = 0 \), since the net signed area = 0.

In order to find \(a_n \) multiply both sides of the series by \(\cos nt \), then integrate both sides with respect to \(t \) and solve for \(a_n \).

\[
\int_{-\pi}^{\pi} f(t) \cos nt \, dt = \int_{-\pi}^{\pi} a_0 \cos nt \, dt + \sum_{m=1}^{\infty} \int_{-\pi}^{\pi} \left(a_m \cos nt \cos mt + b_m \cos nt \sin mt \right) \, dt
\]

\[
\int_{-\pi}^{\pi} f(t) \cos nt \, dt = a_n \int_{-\pi}^{\pi} \cos^2 nt \, dt = \pi a_n
\]

\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt.
\]

Note that \(\int_{-\pi}^{\pi} \frac{a_0}{2} \cos nt \, dt = 0 \) and \(\sum_{m=1}^{\infty} \int_{-\pi}^{\pi} \left(a_m \cos nt \cos mt + b_m \cos nt \sin mt \right) \, dt = \pi a_n \).

I would like to show that \(\sum_{m=1}^{\infty} \int_{-\pi}^{\pi} \left(a_m \cos nt \cos mt + b_m \cos nt \sin mt \right) \, dt = \pi a_n \).

We know that the terms with the \(b_m \) coefficients are zero (since they are odd functions and \(t_1 = -t_2 \) for all terms).
Let's look at the term with the a_n coefficient.

$$
\int_{-\pi}^{\pi} \cos mt \cos nt \, dt = \int_{-\pi}^{\pi} \cos mt \cos nt \, dt = \int_{-\pi}^{\pi} \frac{1}{2} \left[\cos((m+n)t) + \cos((m-n)t) \right] \, dt
$$

$$
= \frac{1}{2} \left[\left(\frac{1}{m+n} \right) \sin((m+n)t) + \left(\frac{1}{m-n} \right) \sin((m-n)t) \right]_{-\pi}^{\pi} = \frac{1}{m+n} \sin \pi (m+n) + \frac{1}{m-n} \sin \pi (m-n)
$$

If $m \neq n$, then $\sin k\pi = 0$, k = any integer.

If $m = n$, then $\frac{1}{m-n} \sin \pi (m-n) = 0$; apply La'Hopital's rule we will have

$$
\lim_{m \to n} \frac{1}{m-n} \sin \pi (m-n) = \lim_{m \to n} \pi \cos \pi (m-n) = \pi. \text{ You could have let } z = m-n \text{ and } \lim_{z \to 0} \frac{\sin \pi z}{z} = \pi.
$$

Note: If you don't want to apply La'Hopital's rule, then you can do the following:

$$
\int_{-\pi}^{\pi} \cos mt \cos nt \, dt = \int_{-\pi}^{\pi} \cos^2 nt \, dt = \int_{0}^{\pi} (\cos 2nt + 1) \, dt = \left[\frac{1}{2n} \sin 2nt + t \right]_{0}^{\pi} = \pi
$$

In order to find b_n do the same thing as you did for a_n, except use the $\sin nt$.

Some useful identities:

$$
\begin{align*}
\int_{-\pi}^{\pi} \cos mt \cos nt \, dt &= \begin{cases}
0, & m \neq n \\
\pi, & m = n
\end{cases} \\
\int_{-\pi}^{\pi} \sin mt \sin nt \, dt &= \begin{cases}
0, & m \neq n \\
\pi, & m = n
\end{cases} \\
\int_{-\pi}^{\pi} \cos mt \sin nt \, dt &= \begin{cases}
0, & m \neq n \\
0, & m = n
\end{cases}
\end{align*}
$$

Note: You need the following trigonometric identities for evaluating the above integrals. I have shown you the first integral.

$$
\cos mt \cos nt = \frac{1}{2} \left[\cos((m+n)t) + \cos((m-n)t) \right]
$$

$$
\sin mt \sin nt = \frac{1}{2} \left[\cos((m-n)t) - \cos((m+n)t) \right]
$$

$$
\cos mt \sin nt = \frac{1}{2} \left[\sin((m+n)t) - \sin((m-n)t) \right]
$$

If the period is $2L$ instead of 2π, then the Fourier series of $f(t)$ is

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} t + b_n \sin \frac{n\pi}{L} t \right)
$$

Note: If the period of f is 2π and the period of g is $2L$, then $g(t) = f\left(\frac{\pi}{L} t \right)$. You can check that the period of g is $2L \left(\frac{2\pi}{\pi/L} = 2L \right)$.

Where
\[a_0 = \frac{1}{L} \int_{-L}^{L} f(t) \, dt \]

\[a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi}{L} \, dt, \quad n = 1, 2, 3, \ldots \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi}{L} \, dt, \quad n = 1, 2, 3, \ldots \]

If the interval is of this form \(0 < t < 2L \), then it is easier to find the coefficients by using the following equations:

\[a_0 = \frac{1}{L} \int_{0}^{2L} f(t) \, dt \]

\[a_n = \frac{1}{L} \int_{0}^{2L} f(t) \cos \frac{n\pi}{L} \, dt, \quad n = 1, 2, 3, \ldots \]

\[b_n = \frac{1}{L} \int_{0}^{2L} f(t) \sin \frac{n\pi}{L} \, dt, \quad n = 1, 2, 3, \ldots \]

If \(f(t) \) is given for half-period \(L \), then for \(-L < t < 0 \) you have a choice of making \(f(t) \) an even function, \(f(-t) = f(t) \), or an odd function, \(f(-t) = -f(t) \).

If you select \(f(t) \) be an even function then,

\[f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} t\right) \quad \text{with} \quad a_n = \frac{2}{L} \int_{0}^{L} f(t) \cos \frac{n\pi}{L} \, dt, \quad n = 1, 2, 3, \ldots \quad \text{and} \quad b_n = 0. \]

If you select \(f(t) \) be an odd function then,

\[f(t) = \sum_{n=1}^{\infty} \left(b_n \sin \frac{n\pi}{L} t\right) \quad \text{with} \quad b_n = \frac{2}{L} \int_{0}^{L} f(t) \sin \frac{n\pi}{L} \, dt, \quad n = 1, 2, 3, \ldots \quad \text{and} \quad a_n = 0, \quad n = 1, 2, \ldots \]

Convergence of Fourier Series-

If \(f \) is a piecewise smooth function, then the Fourier series will converge

a. to \(f(t) \) at every point that \(f \) is continuous,

b. to the average (mean) value of \(f \) at the point of discontinuity. Usually, the function is not defined at \(t = -L, 0, L \). We make \(f \) to be defined at \(t = L \) by

assigning \(f(L) = \frac{\lim_{t \to +L} f(t) + \lim_{t \to -L} f(t)}{2} \). The same applies to all undefined values of \(t \).

The above equation in Fourier notation is presented as: \(f(L) = \frac{f(L^-) + f(L^+)}{2} \).

In many applications of Fourier Series the function is a polynomial. As you know, it takes some time to integrate the product of a polynomial with sine or cosine. I conjectured the following formula. Check the correctness of the following finite series.

Let \(f(t) = t^N, \quad N = 0, 1, 2, \ldots \). We would like to evaluate the following integral:

\[\int_{-L}^{L} t^N \cos nt \, dt = \sin n \sum_{k=0}^{N/2} \frac{(-1)^k}{n^{2k+1}} f^{(2k)\prime}(t) + \cos n \sum_{k=0}^{N/2} \frac{(-1)^k}{n^{2k+2}} f^{(2k+1)\prime}(t) \]

Here, I have ignored the constant of integration.
\[\int t^N \sin nt \, dt = \cos nt \sum_{k=0}^{\frac{N}{2}} \frac{(-1)^k}{n^{2k+1}} f^{(2k)}(t) + \sin nt \sum_{k=0}^{\frac{N}{2}} \frac{(-1)^k}{n^{2k+2}} f^{(2k+1)}(t). \]

It is good to remember that \(t^N \) is even when \(N \) is even; in this case \(\int_{-\pi}^{\pi} t^N \sin nt \, dt = 0. \)

It is also good to know that if \(h(t) = f(t) + g(t) \), then the Fourier series of the sum is the sum of the Fourier of \(f \) and \(g \).

Some popular series:

Leibniz’ series: \(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4} \). Leibniz obtained this series in 1674.

Note: \(\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} \)

Euler’s celebrated sum- You can obtain this by finding the Fourier series for \(f(t) = t^2, \ -\pi < t < +\pi, \ f(t+2\pi) = f(t) \).

\[
\begin{align*}
1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots &= \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \\
1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots &= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = \frac{1}{2} \cdot \frac{\pi^2}{6} \\
1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{64} + \cdots &= \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8} \\
\sum_{k=1}^{\infty} \frac{1}{k^4} &= \frac{\pi^4}{90}
\end{align*}
\]

No one has come up with the exact value of \(\sum_{k=1}^{\infty} \frac{1}{k^N}, \ N = \text{Odd integer greater than 1.} \)