Multiple Integrals

Technology Exercise 4 20 points

Use DPGraph and Derive to find the following. Note, you can copy to the clipboard in DPGraph and paste directly into Derive.

- 1. Use a double integral in polar coordinates to find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 9$ and outside the cylinder $x^2 + y^2 = 1$.
 - a. Use DPGraph to graph the solid.
 - b. Use Derive to find the volume of the solid described.
- 2. Consider the torus

$$x = (5 + 2\cos v)\cos u$$
, $y = (5 + 2\cos v)\sin u$, $z = 2\sin v$

- a. Use DPGraph to graph it.
- b. Use Derive to find the equation of the tangent plane at the point when $u = \frac{\pi}{3}$, $v = \frac{\pi}{6}$.
- c. Graph both the original surface and the tangent plane on the same graph.
- 3. Use Derive to find $\iiint_G e^{-x^2-y^2-z^2} dV$, where G is the spherical region $x^2+y^2+z^2 \le 1$.

- 4. Approximate the location of the centroid of the solid that is bounded above by the surface $z = (x^2 + y^2 + 1)^{-1}$, below by the xy-plane, and laterally by the plane y = 0 and the surface $y = \sin x$ for $0 \le x \le \pi$. (see 15.6.31)
 - a. Use DPGraph to sketch the graph of the solid.
 - b. Use Derive to find the centroid.
- 5. Consider $\iint_R xy \, dA$ where R is the region in the first quadrant enclosed by the hyperbolas $x^2 y^2 = 1$ and $x^2 y^2 = 4$ and the circles $x^2 + y^2 = 9$ and $x^2 + y^2 = 16$.
 - a. Use Derive to sketch the region in the xy-plane.
 - b. Use appropriate transformations to convert the region into the uvplane and sketch the region in the uvplane.
 - c. Find the iterated integral using the uv coordinate system.