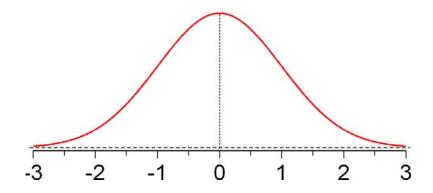
10 pts	113: (s				Name :				
Mate	e rials I Scale	Needed:							
[nstr	uction Do al		he metric sy	ystem					
1.	M&N	M&M/Mars claims that there are grams of candy in each bag.							
2.	For y	our bag of	candy, mea	sure the fol	lowing and	record.			
		Mass of package (g)		Mass of wrapper (g)			Mass of candy (g)		
3.	Reco	rd the num	ber of each	color M&N	И in your ba	ag.			
Co	olor	Red	Orange	Yellow	Green	Blue	Brown	Total	
Nur	nber								
			•						
4.	Gatho	er the mass	of the cand	ly from all	of the stude	nts and rec	ord them in	the table.	
			of the cand				ord them in	the table.	
5. Co							ord them in	the table.	

We will be working with the claimed mass of the candy at this point. Save the color data for later in the course.

The original claim is that there is a certain amount of candy in each bag. Since a sample of size one is statistically useless, we'll instead test the claim that the mean of our bags is that amount.

6. Summarize the sample


Sample Size, n	Mean, \overline{x}	St. Dev, s

- 7. Write the original claim symbolically.
- 8. The original claim is the (null / alternative) hypothesis.
- 9. Write the null and alternative hypotheses.
 - a. H_0 :
 - b. H_1 :
- 10. This is a (left tail / right tail / two tail) test.
- 11. The level of significance is $\alpha =$
- 12. The Student's t distribution needs degrees of freedom, which are _____.
- 13. The critical value(s) is/are _____.
- 14. The test statistic is $t = \frac{\overline{x} \mu}{SE(\overline{x})}$, its value is ______.
- 15. The probability value is ______.
- 16. The _____ % confidence interval is _____ < μ < _____.

17. Complete the following table to demonstrate an understanding of the relationship between the answers questions 10-15. Label those four values appropriately.

t-score	area to left	area to right	twice smaller area

- 18. Illustrate the diagram as follows
 - a. Draw and label vertical line(s) at the critical value(s)
 - b. Shade and label the critical region
 - c. Label the non-critical region
 - d. Label the area in the critical region and non-critical region. Use α notation like $\alpha = 0.05$ or $1 \alpha = 0.05$.
 - e. Label the appropriate regions with "Reject H_0 " and "Retain H_0 ".
 - f. Draw and label a vertical line at the test statistic.
 - g. Label the area beyond the test statistic with the p-value.

- 19. The test statistic (does / does not) fall in the critical region, so we (reject / retain) the null hypothesis.
- 20. The p-value is (less / greater) than the significance level, so we (reject / retain) the null hypothesis.
- 21. The confidence interval (does / does not) contain the claimed value of the mean, so we (reject / retain) the null hypothesis.
- 22. The decision is to (reject / retain) the null hypothesis.

23.	There (is / is not) enough evidence to (reject / support) the claim that the mean amount of candy in each bag is grams.
24.	If you change the alternative hypothesis to be a greater than, the p-value will become
25.	There (is / is not) enough evidence to (reject / support) the claim that the mean amount of candy in each bag is more than grams.

26. Complete the following table regarding p-values and decisions.

one tail area	two tail area	one tail decision	two tail decision
0.063		Reject / Retain	Reject / Retain
	0.078	Reject / Retain	Reject / Retain
	0.036	Reject / Retain	Reject / Retain
0.003		Reject / Retain	Reject / Retain

- 27. Assuming the correct tail is used, a one-tail p-value is always (half / twice) a two-tail p-value.
 - a. If you reject a two-tail test, you will (never / sometimes / always) reject a one-tail test.
 - b. If you reject a one-tail test, you will (never / sometimes / always) reject a two-tail test.