Example Technology Exercise 9 John Smith and Tom Brown

(%i1) ratprint:false\$

¹ 1 Problem 9.7.33

(%i2) X:[0,0.25,0.50,0.75,1.00]\$
 T0:makelist(sin(X[k]),k,1,length(X))\$
 taylor(sin(x),x,0,1)\$
 T1:makelist(subst(x=X[k],%),k,1,length(X))\$
 taylor(sin(x),x,0,3)\$
 T2:makelist(subst(x=X[k],%),k,1,length(X))\$
 taylor(sin(x),x,0,5)\$
 T3:makelist(subst(x=X[k],%),k,1,length(X))\$

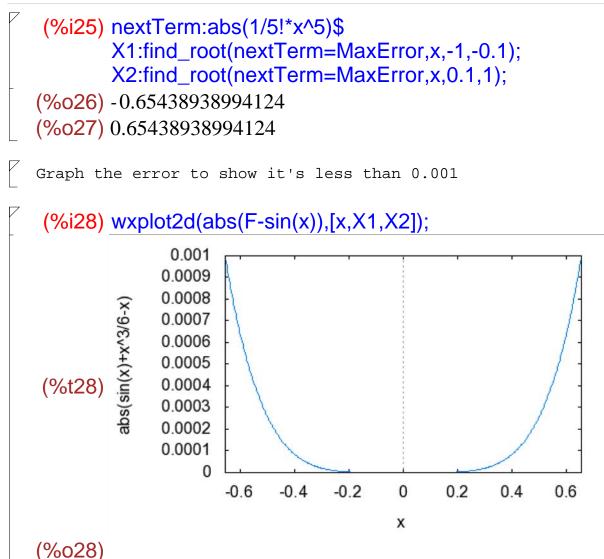
Put it into a matrix so it looks like a table. If you don't want it in a table, then change the \$ to ; at the end of the X, T0, T1, T2, and T3 lines above.

The fpprintprec is to set it to round the printed result to 8 decimals just so it fits on the page. We reset it after the matrix.

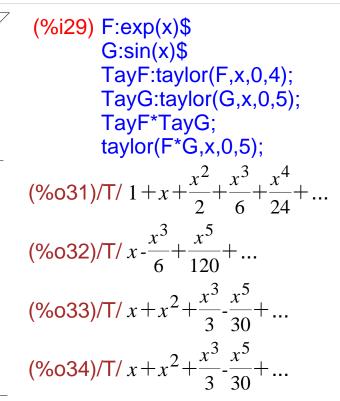
<pre>(%i10) fpprintprec:8\$ matrix(X,T0,T1,T2,T3); fpprintprec:0\$</pre>					
(%011)	0	0.25	0.5	0.75	1.0
	0	0.247404	0.479426	0.681639	0.841471
	0	0.25	0.5	0.75	1.0
	0	0.247396	0.479167	0.679688	0.833333
	0	0.247404	0.479427	0.681665	0.841667

² 2 Problem 9.7.54

Find order of Maclaurin series so error < 0.0001


```
(%i13) F:cos(%pi*x^2)$
          x0:0.6$
  Since the cosine is an alternating series,
  the error is always less than the next term in the series
  (%i15) makelist(subst(x=0,diff(F,x,k))/k!*x0^k,k,0,16)$
          float(%);
 (%016) [1.0,0.0,0.0,0.0,-0.63955036519059,0.0,0.0,0.0,
0.068170778269236, 0.0, 0.0, 0.0, -0.0029065764091611, 0.0, 0.0, 0.0,
6.6389357283333904 10<sup>-5</sup>]
  The error on the 16th order Maclaurin series is less than 0.0001
  But the previous term before that is x^{12}, so we need a 12th order
 Maclaurin series to guarantee the error is < 0.0001
  (%i17) taylor(F,x,0,12);
          subst(x=x0,%)$
          estimate:float(%);
          subst(x=x0,F)$
          actual:float(%);
          err:abs(estimate-actual);
 (\%017)/T/1 - \frac{\pi^2 x^4}{2} + \frac{\pi^4 x^8}{24} - \frac{\pi^6 x^{12}}{720} + \dots
 (%019) 0.42571383666948
 (%o21) 0.42577929156507
 (%022) 6.5454895587957473 10<sup>-5</sup>
```

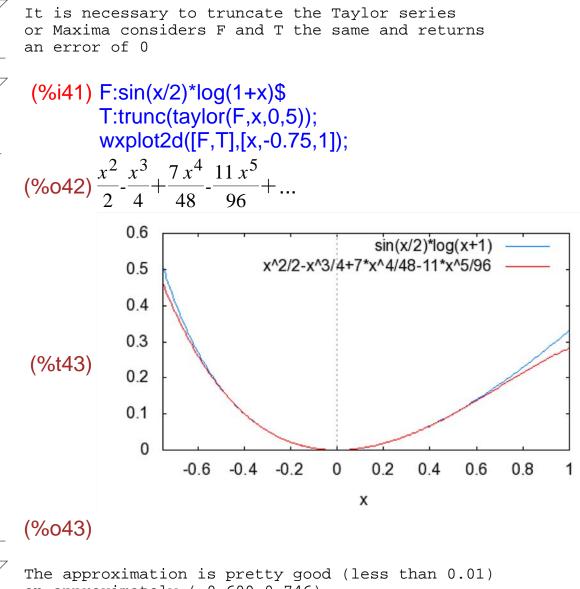
3 Problem 9.7.58


Find values of x such that the maximum error on approximating sin(x) < 0.001

(%i23) F:x-x^3/3!\$ MaxError:0.001\$

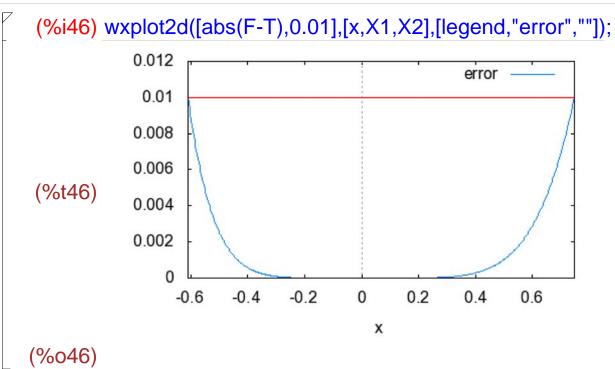
Since this series alternates, the error is less than than the next term in the series.

4 Problem 9.10.47


Multiply the individual Maclaurin series and show you get the same thing as the Maclaurin series for the product.

5 Problem 9.10.51

You could have just divide the Maclaurin series for sin(x) by the polynomial 1+x, but Maxima won't write it as a Taylor series if you do. So it's easier to multiply by the power series for 1/(1+x).


(%i35) F:sin(x)\$
G:1/(1+x)\$
TayF:taylor(F,x,0,5);
TayG:taylor(G,x,0,5);
TayF*TayG;
taylor(F*G,x,0,4);
(%o37)/T/
$$x - \frac{x^3}{6} + \frac{x^5}{120} + ...$$

(%o38)/T/ $1 - x + x^2 - x^3 + x^4 - x^5 + ...$
(%o39)/T/ $x - x^2 + \frac{5x^3}{6} - \frac{5x^4}{6} + \frac{101x^5}{120} + ...$
(%o40)/T/ $x - x^2 + \frac{5x^3}{6} - \frac{5x^4}{6} + ...$

Problem 9.10.80 6

on approximately (-0.609,0.746)

(%i44) X1:find_root(abs(F-T)=0.01,x,-0.7,-0.5); X2:find_root(abs(F-T)=0.01,x,0,1); (%044) -0.60920296531085 (%045) 0.74685165677014

