
Math 230: Mathematical Notation

Purpose:
One goal in any course is to properly use the language of that subject.  Differential
Equations is no different and may often seem like a foreign language.  These notations
summarize some of the major concepts and more difficult topics of the unit.  Typing them
helps you learn the material while teaching you to properly express mathematics on the
computer. Part of your grade is for properly using mathematical content.

Instructions:
Use Word or WordPerfect to recreate the following documents.  Each article is worth 10
points and should be emailed to the instructor at james@richland.edu.  This is not a group
assignment, each person needs to create and submit their own notation.

Type your name at the top of each document.  Include the title as part of what you type. 
The lines around the title aren't that important, but if you will type ----- at the beginning
of a line and hit enter, both Word and WordPerfect will convert it to a line.

For expressions or equations, you should use the equation editor in Word or WordPerfect. 
The instructor used WordPerfect and a 14 pt Times New Roman font with 0.75" margins,
so they may not look exactly the same as your document.

If there is an equation, put both sides of the equation into the same equation editor box
instead of creating two objects.  Be sure to use the proper symbols, there are some
instances where more than one symbol may look the same, but they have different
meanings and don't appear the same as what's on the assignment.  There are some useful
tips on the website at http://people.richland.edu/james/editor/

If you fail to type your name on the document, you will lose 1 point.  Don't type the
hints or reminders that appear on the pages.

These notations are due before the beginning of class on the day of the exam for that
material.  For example, notation 3 is due on the day of the chapter 3 exam.  Late work
will be accepted but will lose 20% of its value per class period.  If I receive your emailed
assignment more than one class period before it is due and you don't receive all 10 points,
then I will email you back with things to correct so that you can get all the points.  Any
corrections need to be submitted by the due date and time or the original score will be
used.



Chapter 1 - Introduction to Differential Equations

A linear differential equation is one where all occurrences of the dependent variable and
its derivatives are raised to the first power.  The order of a differential equation is the
order of the highest derivative in the equation.

A differential equation will have an unique solution if both  and  are ,f x y f
y



continuous on some region.

Mathematical Models
Population Dynamics: The rate of population growth is proportional to the total
population at that time.  dP dt kP
Radioactive Decay:  The rate at which the nuclei of a substance decay is proportional to
the number of nuclei remaining.  dA dt kA
Newton's Law of Cooling:  The rate at which the temperature of a body changes is
proportional to the difference between the temperature of the body and the surrounding

medium.   mdT dt k T T 
Chemical Reactions:  The rate at which a reaction proceeds is proportional to the
product of the remaining concentrations.      dX dt k X X   

Series Circuits:  Kirchoff's second law says  2

2
1d q dq

dt Cdt
L R q E t  

Falling Bodies: Without air resistance and a positive upwards direction,  or
2

2
d s
dt

m mg 

.  With air resistance (viscous damping) and a positive downward direction,dv
dtm mg 

 or .dv
dtm mg kv  2

2
d s ds

dtdt
m k mg 

Slipping Chain:  For a chain in motion around and frictionless peg, 
2

2

2 0gd x
Ldt

x 

Suspended Cables: If  is the tension tangent to the lowest point and  is the portion1T W
of the vertical load between two points, then 1dy dx W T



Chapter 2 - First-Order Differential Equations

A first-order DE is separable if it can be written in the form  .   dy dx g x h y

The standard form for a linear first-order DE is  and is   dy dx P x y f x 

homogeneous if .  The solution to this DE is the sum of two solutions  0f x 
 where  is the general solution to the homogenous DE and  is thec py y y  cy py

particular solution to the nonhomogeneous DE.  The procedure known as variation of

parameters leads to an integrating factor .
 P x dx

e 

The error function and complementary error functions are defined by

 and , where .  2
2

0

x terf x e dt


    2
2 t

x
erfc x e dt



       1erf x erfc x 

For a function , the differential .  If the function is a ,z f x y f f
x ydz dx dy 
  

constant, then the differential is 0.  A DE of the form  is   , , 0M x y dx N x y dy 
an exact differential equation if the left hand side is a differential of some function

.  If M and N are continuous and have continuous partial derivatives on some ,f x y

region, then it is exact if and only if .  If a DE is exact, then you canN x M y    

find the potential function  by integrating  and  and finding the ,f x y Mdx Ndy
union of all the terms.

A function is homogeneous of degree α if it has the property that .    , ,f tx ty t f x y
The substitutions  or  will reduce a homogeneous equation to a separabley ux x vy
first-order DE.

Bernoulli's equation is  and can be solved with the    ndy dx P x y f x y 

substitution .1 nu y 



Chapter 3 - Modeling with First-Order Differential Equations

Kirchoff's Laws:
Let  be impressed voltage,  be current,  be charge,  be inductance,  E t  i t  q t L R

be resistance, and  be capacitance.  Current and charge related by .C  i t dq dt

Conservation of Charge (1st law): The sum of the currents entering a node must equal
the sum of the currents exiting a node. 

Conservation of Energy (2nd law): The voltages around a closed path in a circuit must
sum to zero (voltage drops are negative, voltage gains are positive).

The voltage drop across an inductor is .  The voltage drop across a resistor is
2

2

d qdi
dt dt

L L

.  The voltage drop across a capacitor is .  The sum of the voltage drops isdq
dtiR R 1

C q

equal to the impressed voltage . 2

2
1d q dq

dt Cdt
L R q E t  

Logistic Equation:  When the rate of growth is proportional to the amount present and
the amount remaining before reaching the carrying capacity K, then the resulting DE is

 and the solution is . dP dt P a bP     
0

0 0
at

aP
P t

bP a bP e
 

Lotka-Volterra Predator-Prey Model: If  is the population of a predator and x t

 is the population of the prey at time t, then the populations can be modeled by the y t

system of nonlinear system of DEs:   and . dx dt x a by    dy dt y d cx 



Chapter 4 - Higher-Order Differential Equations

Superposition Principle - Homogeneous Equations: A linear combination of solutions
to a homogeneous DE is also a solution.  This means that constant multiples of a solution
to a homogeneous DE are also solutions and the trivial solution  is always a0y 
solution to a homogeneous DE.

A set of functions is linearly dependent if there is some linear combination of the
functions that is zero for every x in the interval.

A set of solutions is linearly independent if and only if the Wronskian is not zero for
every x in some interval.  A set of linearly independent solutions to a homogeneous DE is
set to be a fundamental set of solutions and there is always a fundamental set for a
homogeneous DE.  

The Wronskian is defined by  
     

1 2

1 2
1 2

1 1 1
1 2

, , ,

n

n
n

n n n
n

y y y

y y y
W y y y

y y y  

  







   



Any function free of arbitrary parameters that satisfies a nonhomogeneous DE is a
particular solution, . The complementary function, , is the general solution to thepy cy

associated homogeneous DE.  The general solution to a nonhomogeneous equation is
.c py y y 

Reduction of Order:  If  is a solution to a second-order linear homogeneous DE 1y x

in standard form , then a second solution is    0y P x y Q x y   

, where  is the integrating factor from chapter 2.     
1

2 1 2
1

y x y x dx
y x








 P x dx
e 

Homogeneous Linear Equations with Constant Coefficients:  The auxiliary equation
is formed by converting the DE into a polynomial function.  For example,

 would have an auxiliary equation of   5 43 20 78 134 99 26 0y y y y y y       
.  You find the solutions to the auxiliary5 4 3 23 20 78 134 99 26 0m m m m m     

equation, which in this case are  with multiplicity 2, , and . 1m  2 3m  2 3m i 
From each of the roots, we form a linear independent combination of terms involving . e



Thus . 
2
3 2

1 2 3 4 5cos3 sin 3
xx x xy c e c xe c e e c x c x    

Two common DEs  and  have solutions of2 0y k y   2 0y k y  
 and  respectively.  The solutions to1 2cos siny c kx c kx  1 2

kx kxy c e c e 

 can also be written as .2 0y k y   1 2cosh sinhy c kx c kx 

Method of Undetermined Coefficients - Superposition Approach:  This method is
useful when the coefficients of the DE are constants and the input function is comprised
of sums or products of constant, polynomial, exponential, or trigonometric (sine and
cosine) functions.  You make guesses about the particular solutions based on the form of
the input and then equate coefficients.

Method of Undetermined Coefficients - Annihilator Approach:  L is an annihilator of

a function if it has constant coefficients and .  In each case below, k is a   0L f x 
whole number less than n.

• Use  to annihilate functions of the form .nD kx

• Use  to annihilate functions of the form . n
D  k axx e

• Use  to annihilate functions of the form  or 2 2 22
n

D D       cosk axx e x

sink axx e x

Variation of Parameters:  Variation of parameters can be used when the coefficients of
the DE are not constants.  It involves the Wronskian, , and two functionsW

 and  that are integrated to find  and .  The particular
 2

1

y f x
u

W
  

 1
2

y f x
u

W
  1u 2u

solution is then .1 1 2 2py u y u y 

Cauchy-Euler Equation:  A linear differential equation composed of terms ,
k

k

d yk
x dx

a x

where the  factors are constant, can be solved by trying .  Treat it like theka my x
auxiliary equation, except use  instead of x.  For example, if the solutions areln x

, then , which simplifies to2 3m i       2 ln
1 2cos 3ln sin 3lnxy e c x c x    

.   2
1 2cos 3ln sin 3lny x c x c x    



Chapter 5 - Modeling with Higher-Order Differential Equations

Free Undamped Motion:   can be written as  where 
2

2
d x
dt

m kx  2

2

2 0d x
dt

x  2 k
m 

and has a solution of .  1 2cos sinx t c t c t  

Free Damped Motion:   can be written as 
2

2
d x dx

dtdt
m kx    2

2

22 0d x dx
dtdt

x   

where  and .  Let .2 m
  2 k

m  2 2d   

• If , the overdamped system has the solution 0d     1 2
t dt dtx t e c e c e  

• If , the critically damped system has the solution .0d     1 2
tx t e c c t 

• If , the underdamped system has the solution0d 

      1 2cos sintx t e c t d c t d 

Driven Motion:  In driven motion, an external force  is applied to the system and f t

the DE is  where .  Use the method of 2

2

22d x dx
dtdt

x F t       f t

mF t 
undetermined coefficients or variation of parameters to solve the nonhomogeneous
equation.

Series Circuit Analogue:  The DE  is overdamped, critically 2

2
1d q dq

dt Cdt
L R q E t  

damped, or underdamped depending on the value of the discriminant .2 4R L C

Deflection of a Beam:  Deflection satisfies the DE  where  is the 4

4

d y

dx
EI w x EI

flexural rigidity and  is the load per unit length. w x



Chapter 6 - Series Solutions of Linear Equations

If  is an ordinary point, then a power series centered at  is .0x x 0x  0
0

k

k
k

y c x x




 

Method of Frobenius:  If  is a regular singular point then there exists at least one0x x

solution of the form  which simplifies to   0 0
0

r k

k
k

y x x c x x




  

, where r is a constant to be determined. 0
0

k r

k
k

y c x x






 

Bessel's Equation of Order v:   2 2 2 2 0x y xy x v y    

The solution is  as long as v is not an integer.   1 2v vy c J x c J x  

If v is integer then the solution is .  Technically, this is a   1 2v vy c J x c Y x  
solution to any Bessel's equation, but we prefer  and  when v  is not an integer.vJ vJ

Modified Bessel Equation:

The solution to  is .  If v is 2 2 2 2 0x y xy x v y        1 2v vy c I x c K x  

not an integer, then  you can use  and  like we did with the Bessel Equation.vI vI

Legendre's Equation of Order n:  . If n is a non-   21 2 1 0x y xy n n y     

negative integer, then  is the solution and some of the solutions are , nP x  0 1P x 

, , , and 1P x x    21
2 2 3 1P x x     31

3 2 5 3P x x x 

.  If n is not a non-negative integer, then the solution is an   4 21
4 8 35 30 3P x x x  

infinite series.



Chapter 7 - The Laplace Transform

Let  be a function defined for .  The Laplace transform of  isf 0t   f t

, provided this integral converges.        
0

stF s f t e f t dt
   L

Laplace transform of a derivative:
              11 20 0 0n nn n nf t s F s s f s f f       L 

First Translation Theorem:     ate f t F s a L

Unit Step Function: Also known as the Heaviside function, it is useful for creating

piecewise functions.  
0, 0

1,

t a
t a

t a

 
   

U

Second Translation Theorem:  If  then 0a        asf t a t a e F s  L U

Derivatives of Transforms:        1
n

n

nn d
ds

t f t F s L

Convolution:  Convolutions, defined by  are commutative,   
0

t
f g f g t d    

, and the Laplace transform of a convolution is the product of the Laplacef g g f  
transforms, .  If you let , then           f g f t g t F s G s  L L L   1g t 

the transform of an integral is .    
0

t F s
f d

s
  L

Transform of a Periodic Function:  , where the    
0

1

1

T st
sT

f t e f t dt
e




 L

period is T.

Dirac Delta Function:  is  when  and 0 otherwise.      0 00
lim aa

t t t t 


    0t t

 and . 00
1t t dt


     0

0
stt t e  L



Chapter 8 - Systems of Linear First-Order DEs

Eigenvalues and Eigenvectors:  If  is a homogeneous linear first-order X AX
system, then the polynomial equation  is the characteristic equation and det 0 A I

its solutions are the eigenvalues.  We want to write a solution as  where  isteX K K
the associated eigenvector.

The general solution to a homogenous linear system is
1 2

1 1 2 2
ntt t

n nc e c e c e    X K K K

If your solutions correspond to a complex eigenvalue , then  and i    teK teK
are both solutions.

For a nonhomogeneous system, the general solution becomes  and thec p X X X
method of undetermined coefficients or variation of parameters can be used to find the
particular solution.

Matrix Exponentials:  For a homogeneous system, we can define a matrix exponential

 so that  is a solution to .  For any square matrix of size n,teA te AX C  X AX

, which can be written as .   is a
2 32 3

2! 3!
t t te t    A I A A A  !

0

kt k t
k

k

e




 A A teA

fundamental matrix.

For nonhomogeneous systems, , the general solution is t  X AX F

.  In practice,  can be found from  by 
0

tt t s
c p t

e e e s ds    A A AX X X C F seA teA

substituting .t s 



Chapter 9 - Numerical Solutions of Ordinary DEs

Euler's Method:  In chapter 2 (and in Calculus II), we had Euler's Method, where

 1 ,n n n ny y h f x y   

Improved Euler's Method: This method estimates the next y value in the sequence

using Euler's method, , and then uses that estimate in a *
1 ,n n n ny y h f x y   

midpoint formula to find the next y used.     *1
1 1 12 , ,n n n n n ny y h f x y f x y  

    

Runge-Kutta Methods: These are generalizations of Euler's method where the slope

 is replaced by a weighted average of the slopes on the interval .  ,n nf x y 1n nx x x  

That is, , where the weights w are chosen so 1 1 1 2 2n n m my y h w k w k w k     
that they agree with a Taylor series of order m.

RK1: The first-order Runge-Kutta method is actually Euler's method.   Choose

 and  to get . 1 ,n nk f x y 1 1w   1 ,n n n ny y h f x y   

RK2:  The second-order Runge-Kutta method chooses values , 1 ,n nk f x y

, and  to get the improved Euler's method where 2 1,n nk f x h y hk   1
1 2 2w w 

   1 1
1 12 2, ,n n n n n ny y h f x y f x h y hk       

RK4:  Let  and .  Choose ,1
1 4 6w w  1

2 3 3w w   1 ,n nk f x y

, , and 1 1
2 12 2,n nk f x h y hk    1 1

3 22 2,n nk f x h y hk  

. 4 3,n nk f x h y hk  


