Math 122 - Calculus & Analytic Geometry II Spring 2013 Course Syllabus

James Jones, Professor of Mathematics Mathematics & Sciences Division – Richland Community College

Phone: 875-7211, ext 490

Office: C223

Meeting Information

Section 01 meets from 2:30 to 3:40 pm on Monday, Wednesday, and Friday in room S137.

Instructor Information

James Jones, Professor of Mathematics.

Email: james@richland.edu

Web: http://people.richland.edu/james/

Office Hours

These are the times I'm scheduled to be in my office. I often spend portions of my office hour in the classroom helping students, so if I'm not in my office, check room S137. If these times are not convenient for you, please see me to make an appointment for some other time.

Monday: 9:00 - 9:30 am, 10:45 - 10:55 am, 2:15 - 2:25 pm, 3:50 - 4:50 pm Wednesday: 9:00 - 9:30 am, 10:45 - 10:55 am, 2:15 - 2:25 pm, 3:50 - 4:30 pm

Friday: 9:00 - 9:30 am, 10:45 - 10:55 am, 2:15 - 2:25 pm

Text

Calculus of a Single Variable, 9th edition. Ron Larson, Bruce Edwards. Copyright 2010, Brooks/Cole Cengage Learning. ISBN 978-0-547-20998-2 (Required)

Student Audience

Transfer students. Students pursuing degrees in engineering, mathematics, computer science, natural sciences, and life sciences.

Prerequisite

Successful completion (C or better grade) of Math 121, Calculus and Analytic Geometry I.

Course Description

MATH 122 - Calculus & Analytic Geometry II

Hours: 4 lecture - 0 lab - 4 credit

Math 122, Calculus & Analytic Geometry II, includes the different methods of integration. Students study transcendental functions, L'Hôpital's Rule, sequences and series, infinite series, power series, Taylor series, conic sections, polar coordinates, parametric equations, and mathematical modeling with differential equations.

Applicable toward graduation where program structure permits.

- Certificate or degree: All certificates and all degrees.
- Group requirement: Mathematics
- Area of Concentration: Mathematics.

Illinois Articulation Initiative (IAI)

The mathematics component of general education focuses on quantitative reasoning to provide a base for developing a quantitatively literate college graduate. Every college graduate should be able to apply simple mathematical methods to the solution of real-world problems. A quantitatively literate college graduate should be able to:

- interpret mathematical models such as formulas, graphs, tables, and schematics, and draw inferences from them;
- represent mathematical information symbolically, visually, numerically, and verbally;
- use arithmetic, algebraic, geometric, and statistical methods to solve problems;
- estimate and check answers to mathematical problems in order to determine reasonableness, identify alternatives, and select optimal results; and
- recognize the limitations of mathematical and statistical models.

Courses accepted in fulfilling the general education mathematics requirement emphasize the development of the student's capability to do mathematical reasoning and problem solving in settings the college graduate may encounter in the future. General education mathematics courses should not lead simply to an appreciation of the place of mathematics in society, nor should they be merely mechanical or computational in character.

To accomplish this purpose, students should have at least one course at the lower-division level that emphasizes the foundations of quantitative literacy and, preferably, a second course that solidifies and deepens this foundation to enable the student to internalize these habits of thought.

Math 122, Calculus & Analytic Geometry II, satisfies the Illinois Articulation Initiative Definition of a General Education Mathematics Course. It corresponds to M1 900-2, College-level Calculus II.

General Course Objectives

While learning calculus is certainly one of the goals of this course, it is not the only objective. Upon completion of this course, the student should be able to ...

- demonstrate comprehension and understanding in the topics of the course through symbolic, numeric, and graphic methods
- demonstrate the use of proper mathematical notation
- use technology when appropriate and know the limitations of technology
- work with others towards the completion of a common goal
- use deductive reasoning and critical thinking to solve problems

Specific Course Objectives

Upon completion of this course, the student should be able to ...

- manipulate, differentiate, and sometimes integrate exponential functions, logarithmic functions, inverse trigonometric functions, and hyperbolic trigonometric functions
- apply L'Hôpital's rule to find limits of indeterminate forms
- use integration by parts, trigonometric substitution, partial fractions, numerical integration, and appropriate technology to integrate
- solve first order differential equations
- determine convergence and divergence of infinite series
- use Maclaurin and Taylor series to approximate functions
- find power series and determine radius and interval of convergence
- convert between rectangular and polar coordinate systems
- find arc length and area in polar coordinates
- find the equations of the conic sections in both rectangular and polar coordinate systems

Type of Instruction

Discussion, problem solving, student questions, student participation, oral presentations, and lecture. Students are expected to read the material before coming to class and are strongly encouraged to come to class with a list of questions and to ask these questions.

Method of Evaluation

Could include any of the following: problem solving exams, objective exams, essays, research papers, oral presentations, group projects, quizzes, homework.

Grading Policy

Letter grades will be assigned to final adjusted scores as follows:

A: 90-100% B: 80 - 89% C: 70-79% D: 60-69% F: below 60%

Consideration may be given to such qualities as attendance, class participation, attentiveness, attitude in class, and cooperation to produce the maximum learning situation for everyone.

The instructor will give you a grade sheet so that you can record your scores and keep track of your progress in the course. If you are concerned about your grades, see the instructor.

Assignments are due at the beginning of the class period on the date they are due. The instructor may be gracious and allow you to turn them in later that day without counting them late, but do not count on his graciousness. Late assignments lose 20% of their value per class period. The instructor reserves the right to apply this rule to missed exams as well as regular assignments. No late work will be accepted after the final.

Attendance Policy

If you miss the first day of class or any two consecutive days after that without communicating with the instructor, you may be dropped.

Regular attendance is essential for satisfactory completion of this course. Mathematics is a cumulative subject and each day builds on the previous day's material. If you have excessive absences, you cannot develop to your fullest potential in the course.

Students who, because of excessive absences, cannot complete the course successfully, are required to be administratively dropped from the class at midterm. If a student stops attending after midterm, it is the student's responsibility to withdraw to avoid an "F". Do not stop attending and assume that you will be withdrawn from the class by the instructor.

Although dropping students for non-attendance at midterm is required, students whose attendance is occasional or sporadic may be dropped from the class at any point during the semester at the instructor's discretion. The safest way to make sure you're not dropped for non-attendance is to continue to attend classes.

The student is responsible for all assignments, changes in assignments, or other verbal information given in the class, whether in attendance or not.

If a student must miss class, a call to the instructor (RCC's phone system has an answering system) should be made or an email message sent. When a test is going to be missed, the student should contact the instructor ahead of time if at all possible. Under certain circumstances, arrangements can be made to take the test before the scheduled time. If circumstances arise where arrangements cannot be made ahead of time, the instructor should be notified and a brief explanation of why given by either voice or email. This notification must occur before the next class period begins.

Homework

Attempting and completing homework is vital to your success in this course. Homework is the practice that strengthens your skills and prepares you to learn the material. The worked out solutions to the odd numbered exercises are available online at www.calcchat.com. This is like having the student solutions manual for free. When you get stumped with a problem, you can go online and see how to work out the problem.

Having the solutions available fosters the temptation to use them to work the problems. This approach does not benefit the student. Instead, attempt the problem on your own first. If you get stuck with a minor algebra or trigonometry problem, then look at the online solution. If you find that your problems are more conceptual or that you keep getting stuck you need to seek additional help: read the book, look for similar examples, ask another student, go to the Academic Success Center, or ask the instructor.

As calculus students, you are some of the best and brightest mathematics students we have and you have some algebraic and trigonometric skills that most students are lacking. You should voluntarily do as much homework as you need to master the material. In this class, you will be given a list of suggested problems. If you find that you are understanding the concepts, this may be enough for you, but if you find that you still don't understand the material after working those problems, it may be necessary for you to work additional problems.

Technology

The use of technology in this course is consistent with the Technology Statement in the <u>Illinois Mathematics</u> & <u>Computer Science Articulation Guide</u> (IMACC, 2008, p. 4). Technology is used to enhance the learning of Calculus, but it is not the focus of the instruction. There will be instances when we will use the calculator or computer to aid in our understanding or remove some of the tediousness of the calculations (especially in the area of numerical approximations). There may be some projects, homework, or portions of a test that require you to use technology to complete.

Here are some of the technology tools that we may use.

Calculator

This class is a mathematics class and a graphing calculator is required. A scientific calculator is not sufficient. The calculator should be capable of graphing functions, finding roots, maximums, and minimums from a graph, displaying tables of values, and finding the definite integral numerically. A Texas Instruments TI-84 or TI 83 is the recommended calculator. That said, a TI-92, TI-89, or TI Nspire CAS calculator is recommended for this course if you plan on taking additional calculus or engineering courses.

Calculators may be used to do homework and may be used on exams and/or quizzes in class unless otherwise announced.

Maxim a

Maxima is an open-source computer algebra system that is free for you to download and use at home. It is available from http://maxima.sourceforge.net/

WinPlot

WinPlot is a free graphing software package for Windows written by Rick Parris at Phillips Exeter Academy in NH. The software is useful for creating graphs and it is easy to copy/paste the graphs into other applications. You may download the software by right-clicking your mouse on the word "WinPlot" at the top of the page http://math.exeter.edu/rparris/winplot.html and choosing save.

Additional Supplies

The student should have a pencil, red pen, ruler, graph paper, stapler, and paper punch. The student is expected to bring calculators and supplies as needed to class. The calculator should be brought daily. There will be a paper punch and stapler in the classroom.

Additional Help

The student is encouraged to seek additional help when the material is not comprehended. Mathematics is a cumulative subject; therefore, getting behind is a very difficult situation for the student. There are several places where you can seek additional help in your classes.

You may use a recording device to record the lectures. Feel free to use a camera or cell phone to take pictures of the boards if you have trouble getting all of the information into your notes.

Calc Chat.com

The textbook has an affiliated website called <u>www.calcchat.com</u> that provides free solutions to all of the odd numbered problems in the textbook.

Instructor

I try to make myself as available to the students as I can. My office hours are listed at the beginning of this syllabus, but those are just the times I'm scheduled to be in my office. Grab me and ask me questions if you see me in the hallway. Ask questions before or after class. If I'm in my office and it's not my scheduled office hours, go ahead and stop in.

The instructor should be considered the authoritative source for material related to this class. If a tutor or other student says something that disagrees with the instructor, believe the instructor.

Study Groups

Probably the best thing you can do for outside help is to form a study group with other students in your class. Work with those students and hold them accountable. You will understand things much better if you explain it to someone else and study groups will also keep you focused, involved, and current in the course.

Academic Success Center

The Academic Success Center consolidates several student services into one area. It is located in the south wing of the first floor next to the Kitty Lindsay Learning Resources Center (library).

Testing

The testing center is located in room S116. You must provide a photo identification and know the name of your instructor to use this service.

Tutoring

The tutoring center provides tutoring on a walk-in or appointment basis in room S118. They also have computers with the mathematical software loaded on it.

Quality tutors for the upper level mathematics are difficult to find. Please consider forming a study group among your classmates.

Accommodations

There are accommodations available for students who need extended time on tests, note takers, readers, adaptive computer equipment, braille, enlarged print, accessible seating, sign language interpreters, books on tape, taped classroom lectures, writers, or tutoring. If you need one of these services, then you should see Learning Accommodation Services in room C148. If you request an accommodation, you will be required to provide documentation that you need that accommodation.

Academic Dishonesty

Each student is expected to be honest in his/her class work or in the submission of information to the College. Richland regards dishonesty in classroom and laboratories, on assignments and examinations, and the submission of false and misleading information to the College as a serious offense.

A student who cheats, plagiarizes, or furnishes false, misleading information to the College is subject to disciplinary action up to and including failure of a class or suspension/expulsion from the College.

Non-Discrimination Policy

Richland Community College policy prohibits discrimination on the basis of race, color, religion, sex, marital or parental status, national origin or ancestry, age, mental or physical disability (except where it is a bonafide occupational qualification), sexual orientation, military status, status as a disabled or Vietnam-era veteran.

Electronic Communication Devices

The Mathematics and Sciences Division prohibits the use of cell phones, pagers, and other non-learning

electronic communication equipment within the classroom. All equipment must be turned off to avoid disturbances to the learning environment. If a student uses these devices during an examination, quiz, or any graded activity, the instructor reserves the right to issue no credit for these assignments. The instructor needs to approve any exceptions to this policy.

Topical Outline

Exponential, Logarithmic, and Inverse Trigonometric Functions – 11 hours

- Inverse functions
- Exponential and logarithmic functions
- Derivatives and integrals of exponential and logarithmic functions
- Graphs and applications of exponential and logarithmic functions
- Derivatives of inverse trigonometric functions
- L'Hôpital's rule and indeterminate forms
- Hyperbolic trigonometric functions, derivatives, integrals, and inverses

Differential Equations – 8 hours

- Slope fields and Euler's method
- Differential equations
- Growth and decay models
- Separation of variables
- First order linear differential equations integrating factor

Principles of Integration – 17 hours

- Overview of integration techniques from Calculus I
- Integration by parts
- Trigonometric integrals
- Trigonometric substitutions
- Rational functions using partial fraction decomposition
- Tables of integrals and computer technology
- Improper integrals

Infinite Series - 14 hours

- Sequences
- Series and convergence
- Integral test, p series
- Comparison, ratio, and root tests
- Alternating series, conditional convergence, absolute convergence
- Maclaurin and Taylor series; power series
- Convergence of Taylor series, computational methods
- Differentiation and integration of power series

Analytic Geometry in Calculus – 13 hours

- Polar coordinate system. Graphs and conversion between polar and rectangular coordinates
- Parametric and polar equations
- Derivatives, tangent lines, arc length, and surface area in parametric and polar form
- Conic sections in rectangular coordinates
- Conic sections in polar coordinates and applications