
MATH 230 Chapter Highlights
Purpose
These chapter highlights serve at least two purposes. They help you pull the important information from
the chapter and you learn to properly express mathematical content in electronic form. Figuring out how
to get it into electronic form forces you to learn the formulas and concepts better since it’s not automatic,
as regular typing may be for some.

The ability to perform technical writing and incorporate mathematical content and technical drawings is
an essential skill to possess for those going into mathematics or engineering. The most common system
for technical writing in education is LATEX (the TEXis pronounced tek not tex). This is a typesetting
system with built-in support for mathematics and you can easily add packages that provide additional
features. All of the mathematical content in the course wiki is entered using LATEX.

While you are not required to use LATEX for these documents, it is highly recommended. Additional
information about LATEX is abundant on the internet and there will be some extra resources in the wiki.
The instructor has been using LATEX for several years to produce exams and can probably help with most
issues.

Instructions
Use LATEX or Microsoft Word to create a summary of the important concepts for each chapter. Examples
are provided in this document, but you should decide on your own what to include.

After creating the file, use the Canvas learning management system to turn in the assignment.

The grade that you receive for the individual chapter highlights is advisory. It does not figure directly into
your final grade for the course. However, if you are unhappy with the advisory grade, you are encouraged
to revise and extend your summaries for inclusion in the Learning Portfolio, where it will be considered
for the grade.

Note for LATEX users

If you’re using LATEX, then convert your document to a Portable Document Format (.pdf) file.

Note for Microsoft Word users

If you’re using Word, then save your document as a Word file with a .docx extension. Do not convert it to
a Rich Text Format (.rtf) file.

Regular typing should be done with the word processing software, but when you come to mathematical
content, you should use the equation editor in Word. Note that the equation editor in recent versions of
Microsoft Word is not as powerful as older versions and you may wish to use Insert / Object / Microsoft
Equation 3.0 instead. Another option is to install MathType and use it (they have a 30 day free trial).

When there is mathematical content, put the entire item into a single equation object instead of creating
multiple objects. Don’t just put the portion that can’t be typed directly into an object (to get x2, don’t type
x and then use an object for the squared). Be sure to use the proper symbols, there are some instances
where more than one symbol may look the same, but they have different meanings and don’t appear the
same as what’s on the assignment. There are some useful tips at https://people.richland.edu/james/editor/

http://www.dessci.com/en/products/mathtype/trial.asp
https://people.richland.edu/james/editor/
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Chapter 1 - Introduction to Differential Equations
A linear differential equation is one where all occurrences of the dependent variable and its derivatives
are raised to the first power. The order of a differential equation is the order of the highest derivative in
the equation.

A differential equation dy
dx = f (x,y) will have an unique solution if both f (x,y) and ∂ f

∂y are continuous on
some region.

Notation
There are four types of notation that we will use for ordinary derivatives in this course.

• Leibniz: dy
dx , d2y

dx2 , d3y
dx3 , . . . , dny

dxn

• Lagrange: y′, y′′, y′′′, . . . , y(n)

• Euler: Dy, D2y, D3y, . . . , Dny (used in chapter 4)

• Newton: ẋ = dx
dt , ẍ = d2x

dt2 (used when derivatives are with respect to time)

Mathematical Models
These models are presented here, but the development and application are covered in later chapters.

First-Order Linear Models

Population Dynamics: The rate of population growth is proportional to the total population at that time.
dP
dt = kP.

Radioactive Decay: The rate at which the nuclei of a substance decay is proportional to the number of
nuclei remaining. dA

dt = kA

Newton’s Law of Cooling: The rate at which the temperature of a body changes is proportional to the
difference between the temperature of the body and the surrounding medium. dT

dt = k(T −Tm)

Second-Order Linear Models

Series Circuits: Kirchhoff’s second law says Ld2q
dt2 +Rdq

dt +
1
C q = E(t)

Falling Bodies: Without air resistance and a positive upwards direction, md2s
dt2 =−mg or mdv

dt =−mg.
With air resistance (viscous damping) and a positive downward direction, mdv

dt = mg− kv or
md2s

dt2 + k ds
dt = mg.

Non-Linear Models

Chemical Reactions: The rate at which a reaction proceeds is proportional to the product of the
remaining concentrations. dX

dt = k(α−X)(β −X)

Spread of Disease: The rate at which a disease spreads is jointly proportional to the number of people
who have been exposed and the number of people who haven’t been exposed. dP

dt = kP(L−P)
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Chapter 2 - First-Order Differential Equations
A differential equation is autonomous if it is a function of the dependent variable only .

A first-order DE is separable if it can be written in the form dy
dx = g(x)h(y).

The standard form for a linear first-order DE is dy
dx +P(x)y = f (x) and is homogeneous if f (x) = 0.

The solution to this DE is the sum of two solutions y = yc + yp where yc is the general solution to the
homogeneous DE and yp is the particular solution to the nonhomogeneous DE. The procedure known as
variation of parameters leads to an integrating factor µ = e

∫
P(x)dx.

For a function z = f (x,y), the differential is dz = ∂ f
∂x dx+ ∂ f

∂y dy. If the function is a constant, then the
differential is 0. A DE of the form M(x,y)dx+N(x,y)dy = 0 is an exact differential equation if the left
hand side is a differential of some function f (x,y). If M and N are continuous and have continuous
partial derivatives on some region, then it is exact if and only if Nx = My. If a DE is exact, then you can
find the potential function f (x,y) by integrating

∫
M dx and

∫
N dy and collecting the distinct terms.

A function is homogeneous of degree α if it has the property that f (tx, ty) = tα f (x,y). If both M and N
are homogeneous functions of the same degree, then the substitutions y = ux or x = vy will reduce
M dx+N dy = 0 to a separable first-order DE.

Bernoulli’s equation is dy
dx +P(x)y = f (x)yn and can be solved with the substitution u = y1−n.

Use ASLEHBN as a way to remember the order of attacking a first-order DE: Autonomous, Separable,
Linear, Exact, Homogeneous, Bernoulli, or None of these.
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Chapter 3 - Modeling with First-Order Differential Equations
Falling Body: The model for a falling body where air resistance is proportional to the velocity is
dv
dt = g− k

mv.

Logistic Equation: When the rate of growth of a population P is proportional to the amount present and
the amount remaining before reaching the carrying capacity L, then the resulting DE is dP

dt = kP(L−P).

Kirchhoff’s Laws
Let E(t) be impressed voltage, i(t) be current, q(t) be charge, L be inductance, R be resistance, and C be
capacitance. Current and charge related by i(t) = dq

dt .

Conservation of Charge (1st law): The sum of the currents entering a node must equal the sum of the
currents exiting a node.

Conservation of Energy (2nd law): The voltages around a closed path in a circuit must sum to zero
(voltage drops are negative, voltage gains are positive).

The voltage drop across an inductor is L di
dt = Ld2q

dt2 . The voltage drop across a resistor is iR = Rdq
dt . The

voltage drop across a capacitor is 1
C q. The sum of the voltage drops is equal to the impressed voltage

Ld2q
dt2 +Rdq

dt +
1
C q = E(t) .
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Chapter 4 - Higher-Order Differential Equations
Superposition Principle - Homogeneous Equations: A linear combination of solutions to a
homogeneous DE is also a solution. This means that constant multiples of a solution to a homogeneous
DE are also solutions and the trivial solution y = 0 is always a solution to a homogeneous DE.

A set of functions is linearly dependent if there is some linear combination of the functions that is zero
for every x in the interval.

A set of solutions is linearly independent if and only if the Wronskian is not zero for every x in some
interval. A set of linearly independent solutions to a homogeneous DE is said to be a fundamental set of
solutions and there is always a fundamental set for a homogeneous DE.

The Wronskian of n functions y1, y2, . . . , yn, is the n×n determinant W =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... . . . ...
y(n−1)

1 y(n−1)
2 · · · y(n−1)

n

∣∣∣∣∣∣∣∣∣
Any function free of arbitrary parameters that satisfies a nonhomogeneous DE is a particular solution, yp.
The complementary function, yc, is the general solution to the associated homogeneous DE. The general
solution to a nonhomogeneous equation is y = yc + yp.

Reduction of Order: If y1 is a solution to a second-order linear homogeneous DE in standard form

y′′+P(x)y′+Q(x)y = 0, then a second solution is y2 = y1

∫
µ−1

y2
1

dx, where µ = e
∫

P(x)dx is the

integrating factor from chapter 2.

Homogeneous Linear Equations with Constant Coefficients: The auxiliary equation is formed by
converting the DE into a polynomial function. For example, 3y(5)+ y(4)+3y′′′+109y′′+192y′+52y = 0
would have an auxiliary equation of 3m5 +m4 +3m3 +109m2 +192m+52 = 0. You find the solutions to
the auxiliary equation, which in this case are m =−2 with multiplicity 2, m =−1

3 , and m = 2±3i. From
each of the roots, we form a linear independent combination of terms involving emx. Thus
y = c1e−2x + c2xe−2x + c3e−1/3x + e2x (c4 cos3x+ c5 sin3x).

Two common DEs y′′+ k2y = 0 and y′′− k2y = 0 have solutions of y = c1 coskx+ c2 sinkx and
y = c1ekx + c2e−kx respectively. The solutions to y′′− k2y = 0 can also be written as
y = c1 coshkx+ c2 sinhkx.

Method of Undetermined Coefficients - Superposition Approach: This method is useful when the
coefficients of the DE are constants and the input function is comprised of sums or products of constant,
polynomial, exponential, or trigonometric (sine and cosine) functions. You make guesses about the
particular solutions based on the form of the input and then equate coefficients.

Method of Undetermined Coefficients - Annihilator Approach: L is an annihilator of a function if it
has constant coefficients and L( f (x)) = 0.

• Use Dn to annihilate functions of the form xk, where k is a whole number less than n.

• Use D−α to annihilate functions of the form eαx.

• Use D2 +β 2 to annihilate functions for the form cosβx or sinβx.

• Combinations of polynomial, exponential, and trigonometric functions can be annihilated by using
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[
(D−α)2 +β 2]n that annihilates functions of the form xkeαx cosβx or xkeαx sinβx, where k is a

whole number less than n.

Variation of Parameters: Variation of parameters can be used when the coefficients of the DE are not
constants. It involves the Wronskian, W , and two functions u′1 =−

y2 f (x)
W and u′2 =

y1 f (x)
W that are

integrated to find u1 and u2. The particular solution is then yp = u1y1 +u2y2.

Cauchy-Euler Equation: This looks like a linear DE with constant coefficients except that the
coefficients have an extra factor of xk, where k is the same as the order of the derivative. The solution is
y = xm, which makes y′ = mxm−1, y′′ = m(m−1)xm−2, and so on. Substitute and solve for m, but then
replace x by lnx when writing the solution. For example, x2y′′+5xy′+4y = 0 turns into
m(m−1)+5m+4 = 0, which has a solution of m =−2 with multiplicity 2. The solution is
y = c1e−2lnx + c2(lnx)e−2lnx, which simplifies to y = c1x−2 + c2x−2 lnx.
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Chapter 5 - Modeling with Higher-Order Differential Equations
Spring/Mass Systems
Let x = 0 be the equilibrium position with downward being the positive direction.

The main equation is mẍ+β ẋ+ kx = f (t). Dividing through by the mass, m, and making some
substitutions gives us ẍ+2λ ẋ+ω2x = F(t), where 2λ = β

m , ω2 = k
m , and F(t) = f (t)

m .

This is a second order linear differential equation with constant coefficients and can be solved using the
techniques from chapter 4.

Free motion means that no outside forces act on the system, so f (t) = 0 and you have a homogeneous
equation. A driven system means that an external force acts on the system and you have f (t) 6= 0, which
makes it a non-homogeneous equation.

An undamped system means that there are no retarding forces acting on the spring. In this case the first
order term disappears since β = 0. A damped system the medium through which the spring moves slows
it down and β > 0.

We can use d = λ 2−ω2 to determine the type of damping in the system. A system is overdamped when
d > 0, underdamped when d < 0, and critically damped when d = 0. If this sounds like determining the
types of roots of a quadratic equation, that’s because it is. The discriminant b2−4ac from the general
quadratic equation becomes 2d in these systems.

Series Circuit Analogue

Kirchhoff’s second law Ld2q
dt2 +Rdq

dt +
1
C q = E(t) is a second order, non-homogeneous, linear differential

equation with constant coefficients. It is overdamped, critically damped, or underdamped depending on
the value of the discriminant R2− 4L

C .

Deflection of a Beam

Deflection of a horizontal beam satisfies the equation EI d4y
dx4 = w(x) where EI is the flexural rigidity and

w(x) is the load per unit length.

• An embedded end has no deflection, y = 0, and is horizontal, y′ = 0.

• A free end has no bend, y′′ = 0, and cannot be sheared, y′′′ = 0.

• A simply supported end has no deflection, y = 0, and no bend, y′′ = 0.
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Chapter 6 - Series Solutions of Linear Equations

If x = x0 is an ordinary point, then a power series centered at x0 is y =
∞

∑
k=0

ck (x− x0)
k.

Method of Frobenius
If x = x0 is a regular singular point then there exists at least one solution of the form

y = (x− x0)
r

∞

∑
k=0

ck (x− x0)
k, which simplifies to y =

∞

∑
k=0

ck (x− x0)
k+r, where r is a constant to be

determined.

Bessel’s Equation of Order v

Bessel’s equation is x2y′′+ xy′+(α2x2− v2)y = 0. The solution is y = c1Jv(αx)+ c2J−v(αx) as long as v
is not an integer. If v is integer then the solution is y = c1Jv(αx)+ c2Yv(αx). Technically, this is a
solution to any Bessel equation, but we prefer Jv and J−v when v is not an integer.

The Modified Bessel Equation is x2y′′+ xy′− (α2x2 + v2)y = 0. The solution is similar to the Bessel
Equation, except you replace J by I and Y by K.

Legendre’s Equation of Order n

Legendre’s equation is (1− x2)y′′−2xy′+n(n+1)y = 0. If n is a non-negative integer, then the solution
is a polynomial Pn(x). The first few solutions are P0(x) = 1, P1(x) = x, P2(x) = 1

2(3x2−1),
P3(x) = 1

2(5x3−3x), and P4(x) = 1
8(35x4−30x2 +3). If n is not a non-negative integer, then the solution

is an infinite series.
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Chapter 7 - The Laplace Transform
Let f be a function defined for t ≥ 0. The Laplace transform of f (t) is F(s) = L { f (t)}=

∫
∞

0 e−st f (t)dt,
provided this integral converges.

Basic Tranforms
Here are the basic Laplace transformations.

• L {tn}= n!
sn+1

• L {eat}= 1
s−a

• L {sinkt}= k
s2+k2

• L {coskt}= s
s2+k2

• L {sinhkt}= k
s2−k2

• L {coshkt}= s
s2−k2

Solving Initial Value Problems
Laplace transforms can be used to solve initial value problems about t = 0. One of the huge benefits over
what we did in chapter 4 is that this solves the equation and finds the constants at the same time.

1. Take the Laplace transform, L , of both sides

2. Solve for Y (s)

3. Take the inverse Laplace transform, L −1, of both sides

Combinations of Functions
There are three types of functions we deal with: polynomial, exponential, and trigonometric functions. If
your expression involves only one of the three, then use the basic transform for that function.

If your function contains an exponential and one of the other two types, then find the transform of the
other type and apply the translation theorem L {eat f (t)}= F(s−a). For example, in L

{
e3t cos4t

}
,

you would begin with F(s) = L {cos4t}= s
s2+16 and then find F(s−3) = s−3

(s−3)2+16 .

If you are unable to find a transform of an expression involving a polynomial by one of the other means,
then you can use the translation theorem L {tn f (t)}= (−1)n dn

dsn [F(s)].

Partial Fractions
You will need to use partial fractions for many of the problems in this chapter. When the denominators
are composed of distinct linear factors, you can use the cover-up method. In this method, you cover up a
factor and then substitute the corresponding root into the rest of the expression to get the coefficient over
the factor.

This shortcut does not work for repeated roots or quadratic factors. In those cases, you may need to use
undetermined coefficients to find the values.
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Chapter 8 - Systems of Linear First-Order DEs
Eigenvalues and Eigenvectors
If X′ = AX is a homogeneous linear first-order system, then the polynomial equation is the characteristic
equation det(A−λ I) = 0 and its solutions are the eigenvalues. We want to write a solution as X = Keλ t ,
where K is the associated eigenvector.

The general solution to a homogeneous linear system is X = c1K1eλ1t + c2K2eλ2t + · · ·+ cnKneλnt

If K is an eigenvector corresponding to the complex eigenvalue λ = α +β i, then let B1 = Re(K) and
B2 = Im(K). The two solutions with real coefficients are X1 = [B1 cosβ t−B2 sinβ t]eαt and
X2 = [B1 sinβ t +B2 cosβ t]eαt .

For a nonhomogeneous system, the general solution becomes X = Xc +Xp and the method of
undetermined coefficients or variation of parameters can be used to find the particular solution.

Matrix Exponentials
For a homogeneous system, we can define a matrix exponential eAt so that X = eAtC is a solution to
X′ = AX. For any square matrix of size n, eAt = I+At +A2

(
t2

2!

)
+A3

(
t3

3!

)
+ · · · , which can be written

as eAt =
∞

∑
k=0

Ak
(

tk

k!

)
.

Φ(t) = eAt is a fundamental matrix.

For nonhomogeneous systems, X′ = AX+F(t), the general solution is X = Xc +Xp where Xc = φ(t)C

and Xp = Φ(t)
∫ t

t0
Φ
−1(s)F(s)ds. In practice, Φ−1(s) = e−As can be found from eAt by substituting

t =−s.
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Chapter 9 - Numerical Solutions of Ordinary DEs
Euler’s Method
In chapter 2 (and in Calculus II), we had Euler’s Method, which used a sequence of local linear
approximations, f (x+∆x)≈ f (x)+∆y where ∆y was approximated by dy = f ′(x)∆x, to estimate the
next value in y. Replacing ∆x by h and switching to the multivariable form dy

dx = f (x,y), we get the
formula used.

yn+1 = yn +h · f (xn,yn)

Improved Euler’s Method
This method estimates the next y value in the sequence using Euler’s method, y∗n+1 = yn +h · f (xn,yn),
and then averages the slopes at the two ends of the interval to find a better approximation for the next y.

yn+1 = yn +
1
2h
[

f (xn,yn)+ f (xn+1,y∗n+1)
]

Runge-Kutta Methods
These are generalizations of Euler’s method where the slope f (xn,yn) is replaced by a weighted average
of the slopes on the interval xn ≤ x≤ xn+1. That is, yn+1 = yn +h(w1k1 +w2k2 + · · ·+wmkm), where the
weights w are chosen so that they agree with a Taylor series of order m.

RK1

The first-order Runge-Kutta method is actually Euler’s method. Choose k1 = f (xn,yn) and w1 = 1 to get
yn+1 = yn +hk1.

RK2

The second-order Runge-Kutta method chooses k1 = f (xn,yn), k2 = f (xn +h,yn +hk1), and w1 = w2 =
1
2

to get the improved Euler’s method where yn+1 = yn +
1
2h [k1 + k2]

RK4

The fourth-order Runge-Kutta method chooses k1 = f (xn,yn), k2 = f (xn +
1
2h,yn +

1
2hk1),

k3 = f (xn +
1
2h,yn +

1
2hk2), and k4 = f (xn +h,yn +hk3). The weights are w1 = w4 =

1
6 and w2 = w3 =

1
3 .

The result is yn+1 = yn +
1
6h [k1 +2k2 +2k3 + k4].
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