
MATH 230 Chapter Highlights 
Chapter Highlights are due the day after we fnish the material for a chapter. See Canvas for due dates. 

Purpose 
These chapter highlights serve at least two purposes. They help you pull the important information from 
the chapter and you learn to properly express mathematical content in electronic form. Figuring out how 
to get it into electronic form helps you to learn the formulas and concepts better since it’s not automatic. 

The ability to perform technical writing and incorporate mathematical content and technical drawings is 
an essential skill to possess for those going into mathematics or engineering. The most common system 
for technical writing in education is LATEX (the TEX is pronounced tek not tex). This is a typesetting 
system with built-in support for mathematics and you can easily add packages that provide additional 
features. All of the mathematical content in the course wiki is entered using LATEX. 

You are not required to use LATEX for these documents, but it is more powerful than Microsoft Word. 
Additional information about LATEX is abundant on the internet and there will be some extra resources in 
the wiki. The instructor has been using LATEX for several years and can probably help with most issues. 

Instructions 
Use LATEX or Microsoft Word to create a summary of the important concepts for each chapter. Examples 
are provided in this document, but you should decide on your own what to include. You should not 
consider the examples to be comprehensive. 

After creating the fle, use the Canvas learning management system to turn in the assignment. 

Note for LATEX users 

If you’re using LATEX, then convert your document to a Portable Document Format (.pdf) fle. 

Note for Microsoft Word users 

If you’re using Word, then save your document as a Word fle with a .docx extension. Do not convert it to 
a Rich Text Format (.rtf) fle. 

Regular typing should be done with the word processing software, but when you come to mathematical 
content, you should use the equation editor in Word. This is found using Insert → Equation. The 
keyboard shortcut is to hold down the Alt key and press =. 

When there is mathematical content, put the entire item into a single equation object instead of creating 
multiple objects. Don’t just put the portion that can’t be typed directly into an object (to get x2, don’t type 
x and then use an object for the squared). Be sure to use the proper symbols, there are some instances 
where more than one symbol may look the same, but they have different meanings and don’t appear the 
same as what’s on the assignment. There are some useful tips at https://people.richland.edu/james/editor/ 

Note about Laplace Transforms (chapter 7) 

The script L symbol for a Laplace transform is not available in Word. You can obtain their version of a 
script L from the symbols palette. 

If you’re using LATEX, you’ll want the rsfs10 package and use \mathscr{L}. 

https://people.richland.edu/james/editor/


Chapter 1 - Introduction to Differential Equations Example Highlights 

Chapter 1 - Introduction to Differential Equations 
A linear differential equation is one where all occurrences of the dependent variable and its derivatives 
are raised to the frst power. The order of a differential equation is the order of the highest derivative in 
the equation. 

A differential equation dy = f (x,y) will have an unique solution if both f (x,y) and ∂ f are continuous on dx ∂ y 
some region. 

Notation 
There are four types of notation that we will use for ordinary derivatives in this course. 

d2y d3y dny• Leibniz: dy 
dx3 , . . . , dx , dx2 , dxn 

, y ′′ , y ′′′• Lagrange: y ′ , . . . , y(n) 

• Euler: Dy, D2y, D3y, . . . , Dny (used in chapter 4) 

dx d2x• Newton: ẋ = x = (used when derivatives are with respect to time) dt , ¨ dt2 

Mathematical Models 
These models are presented here, but the development and application are covered in later chapters. 

First-Order Linear Models 

Population Dynamics: The rate of population growth is proportional to the total population at that time. 
dP = kP.dt 

Radioactive Decay: The rate at which the nuclei of a substance decay is proportional to the number of 
nuclei remaining. dA = kA dt 

Newton’s Law of Cooling: The rate at which the temperature of a body changes is proportional to the 
difference between the temperature of the body and the surrounding medium. dT = k(T − Tm)dt 

Second-Order Linear Models 
q 1Series Circuits: Kirchhoff’s second law says Ld

dt 

2

2 + Rdq 
C q = E(t)dt + 

d2s dv Falling Bodies: Without air resistance and a positive upwards direction, m = −mg or m = −mg.dt2 dt 
With air resistance (viscous damping) and a positive downward direction, mdv 

dt = mg − kv or 
md

dt 
2
2 
s + k ds = mg.dt 

Non-Linear Models 

Chemical Reactions: The rate at which a reaction proceeds is proportional to the product of the 
remaining concentrations. dX = k(α − X)(β − X)dt 

Spread of Disease: The rate at which a disease spreads is jointly proportional to the number of people 
who have been exposed and the number of people who haven’t been exposed. dP = kP(L − P)dt 



Chapter 2 - First-Order Differential Equations Example Highlights 

Chapter 2 - First-Order Differential Equations 
A differential equation is autonomous if it is a function of the dependent variable only . 

A frst-order DE is separable if it can be written in the form dy = g(x)h(y).dx 

The standard form for a linear frst-order DE is dy f (x) and is homogeneous if f (x) = 0.dx + P(x)y = 
The solution to this DE is the sum of two solutions y = yc + yp where yc is the general solution to the 
homogeneous DE and yp is the particular solution to the nonhomogeneous DE. The procedure known asR 

P(x)dx variation of parameters leads to an integrating factor µ = e . 
∂ f ∂ fFor a function z = f (x,y), the differential is dz = dx + dy. If the function is a constant, then the 
∂ x ∂ y 

differential is 0. A DE of the form M(x,y)dx + N(x,y)dy = 0 is an exact differential equation if the left 
hand side is a differential of some function f (x,y). If M and N are continuous and have continuous 
partial derivatives on some region, then it is exact if and only if Nx = My. If a DE is exact, then you canR R 
fnd the potential function f (x,y) by integrating M dx and N dy and collecting the distinct terms. 

A function is homogeneous of degree α if it has the property that f (tx, ty) = tα f (x,y). If both M and N 
are homogeneous functions of the same degree, then the substitutions y = ux or x = vy will reduce 
M dx + N dy = 0 to a separable frst-order DE. 

dx + P(x)y = 1−nBernoulli’s equation is dy f (x)yn and can be solved with the substitution u = y . 

Use ASLEHBN as a way to remember the order of attacking a frst-order DE: Autonomous, Separable, 
Linear, Exact, Homogeneous, Bernoulli, or None of these. 



Chapter 3 - Modeling with First-Order Differential Equations Example Highlights 

Chapter 3 - Modeling with First-Order Differential Equations 
Falling Body: The model for a falling body where air resistance is proportional to the velocity is 
dv = g − k v.dt m 

Logistic Equation: When the rate of growth of a population P is proportional to the amount present and 
the amount remaining before reaching the carrying capacity L, then the resulting DE is dP = kP(L − P).dt 

Kirchhoff’s Laws 
Let E(t) be impressed voltage, i(t) be current, q(t) be charge, L be inductance, R be resistance, and C be 

dq capacitance. Current and charge related by i(t) = dt . 

Conservation of Charge (1st law): The sum of the currents entering a node must equal the sum of the 
currents exiting a node. 

Conservation of Energy (2nd law): The voltages around a closed path in a circuit must sum to zero 
(voltage drops are negative, voltage gains are positive). 

= Ld2qThe voltage drop across an inductor is L di 
dt2 . The voltage drop across a resistor is iR = Rdq 

dt . Thedt 
voltage drop across a capacitor is C 

1 q. The sum of the voltage drops is equal to the impressed voltage 

Ld2q 1 
dt2 + Rdq 

C q = E(t) .dt + 
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Chapter 4 - Higher-Order Differential Equations Example Highlights 

Chapter 4 - Higher-Order Differential Equations 
Superposition Principle - Homogeneous Equations: A linear combination of solutions to a 
homogeneous DE is also a solution. This means that constant multiples of a solution to a homogeneous 
DE are also solutions and the trivial solution y = 0 is always a solution to a homogeneous DE. 

A set of functions is linearly dependent if there is some linear combination of the functions that is zero for 
every x in the interval. You can also show that the Wronskian is never zero for every x in some interval. 

y1 y2 · · · yn 

y ′ y ′ · · · y ′ 1 2 n
The Wronskian of n functions y1, y2, . . . , yn, is the n × n determinant W = . . . . . . . . . . . . 

(n−1) (n−1) (n−1)y y · · · y1 2 n 

A set of linearly independent solutions to a homogeneous DE is said to be a fundamental set of solutions 
and there is always a fundamental set for a homogeneous DE. 

Any function free of arbitrary parameters that satisfes a nonhomogeneous DE is a particular solution, yp. 
The complementary function, yc, is the general solution to the associated homogeneous DE. The general 
solution to a nonhomogeneous equation is y = yc + yp. 

Reduction of Order: If y1 is a solution to a second-order linear homogeneous DE in standard formRR µ−1 
y ′′ + P(x)y ′ + Q(x)y = 0, then y2 = y1 2 dx, where µ = e P(x)dx is the integrating factor. 

y1 

Homogeneous Linear Equations with Constant Coeffcients: The auxiliary equation is formed by 
converting the DE into a polynomial function where the order of the derivative is the power on m. Find 
the solutions to the auxiliary equation and then substitute into y = emx to fnd each solution of the DE. 

′′ ′′ − k2Two common DEs y + k2y = 0 and y y = 0 have solutions of y = c1 coskx + c2 sinkx and 
y = c1ekx + c2e−kx respectively. The solutions to y ′′ − k2y = 0 can be written as y = c1 coshkx + c2 sinhkx. 

Method of Undetermined Coeffcients - Superposition Approach: This method is useful when the 
coeffcients of the DE are constants and the input function is comprised of sums or products of constant, 
polynomial, exponential, or trigonometric (sine and cosine) functions. You make guesses about the 
particular solutions based on the form of the input and then equate coeffcients. 

Method of Undetermined Coeffcients - Annihilator Approach: L is an annihilator of a function if it 
has constant coeffcients and L( f (x)) = 0. 

• Use Dn to annihilate functions of the form xk, where k is a whole number less than n. 
αx• Use D − α to annihilate functions of the form e . 

• Use D2 + β 2 to annihilate functions for the form cosβ x or sinβ x. 
• Combinations of polynomial, exponential, and trigonometric functions can be annihilated by using � 

(D − α)2 + β 2
�n that annihilates functions of the form xkeαx cosβ x or xkeαx sinβ x, where k < n. 

Variation of Parameters: Variation of parameters can be used when the coeffcients of the DE are not 
y1 f (x)constants. It involves the Wronskian, W , and two functions u ′ 1 = −y2 f (x) and u ′ 2 = that are W W 

integrated to fnd u1 and u2. The particular solution is then yp = u1y1 + u2y2. 

Cauchy-Euler Equation: This looks like a linear DE with constant coeffcients except that the 
coeffcients have an extra factor of xk, where k is the order of the derivative. Solve for m and then 
substitute into y = xm . You can use y = emt , as before, but substitute t = lnx when writing the solution. 



Chapter 5 - Modeling with Higher-Order Differential Equations Example Highlights 

Chapter 5 - Modeling with Higher-Order Differential Equations 
Spring/Mass Systems 
Let x = 0 be the equilibrium position with downward being the positive direction. 

The main equation is mẍ+ β ẋ+ kx = f (t). Dividing through by the mass, m, and making some 
β k f (t)substitutions gives us ẍ+ 2λ ẋ+ ω2x = F(t), where 2λ = , ω2 = , and F(t) = .m m m 

This is a second order linear differential equation with constant coeffcients and can be solved using the 
techniques from chapter 4. 

Free motion means that no outside forces act on the system, so f (t) = 0 and you have a homogeneous 
equation. A driven system means that an external force acts on the system and you have f (t) ̸= 0, which 
makes it a non-homogeneous equation. 

An undamped system means that there are no retarding forces acting on the spring. In this case the frst 
order term disappears since β = 0. A damped system the medium through which the spring moves slows 
it down and β > 0. 

We can use d = λ 2 − ω2 to determine the type of damping in the system. A system is overdamped when 
d > 0, underdamped when d < 0, and critically damped when d = 0. If this sounds like determining the 
types of roots of a quadratic equation, that’s because it is. The discriminant b2 − 4ac from the general 
quadratic equation becomes 2d in these systems. 

Series Circuit Analogue 
q 1Kirchhoff’s second law Ld

dt 

2

2 + Rdq 
C q = E(t) is a second order, non-homogeneous, linear differential dt + 

equation with constant coeffcients. It is overdamped, critically damped, or underdamped depending on 
the value of the discriminant R2 − 4 

C
L . 

Defection of a Beam 
yDefection of a horizontal beam satisfes the equation EI d

4 
= w(x) where EI is the fexural rigidity and dx4 

w(x) is the load per unit length. 

• An embedded end has no defection, y = 0, and is horizontal, y ′ = 0. 

• A free end has no bend, y ′′ = 0, and cannot be sheared, y ′′′ = 0. 

′′• A simply supported end has no defection, y = 0, and no bend, y = 0. 



Chapter 6 - Series Solutions of Linear Equations Example Highlights 

Chapter 6 - Series Solutions of Linear Equations 
All functions with real coeffcients can be expressed as power series centered about a point. If the power 
series converges only at the point, then the point is called a singular point; otherwise the point is called an 
ordinary point and the function is called analytic at the point. 

If the ordinary point is x = 0, we let y = 
∞

∑ cnxn , y ′ = 
∞

∑ ncnxn−1, and y ′′ = 
∞

∑ n(n − 1)cnxn−2 . 
n=0 n=1 n=2 

Method of Frobenius 
The standard form for a differential equation involving singular point is y ′′ + P(x)y ′ + Q(x)y = 0 

If p(x) = (x − x0)P(x) and q(x) = (x − x0)Q(x) are both analytic at x0, then x0 is said to be a regular 
singluar point. 

If x = x0 is a regular singular point then there exists at least one solution of the form 
k, which simplifes to y = 

∞

∑ 
k 0= 

∞

∑y = (x − x0)
r k+r, where r is a constant to be ck (x − x0) ck (x − x0) 

k=0 
determined. 

When the singular point is x = 0, the values of r can be found by solving the indicial equation 
r(r − 1)+ a0r + b0 = 0, where a0 and b0 are the constants in p(x) = xP(x) and q(x) = x2Q(x) respectively. 

Bessel’s Equation 
2 ′′Bessel’s equation of order v is x y + xy ′ +(α2x2 − v2)y = 0. The solution is y = c1Jv(αx)+ c2J−v(αx) 

as long as v is not an integer. If v is integer then the solution is y = c1Jv(αx)+ c2Yv(αx). Technically, this 
is a solution to any Bessel equation, but we prefer Jv and J−v when v is not an integer. 

2 ′′ 2The Modifed Bessel Equation is x y + xy ′ − (α2x + v2)y = 0. The solution is similar to the Bessel 
Equation, except you replace J by I and Y by K. 

Legendre’s Equation 
Legendre’s equation of order n is (1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0. If n is a non-negative integer, then 

1the solution is a polynomial Pn(x). The frst few solutions are P0(x) = 1, P1(x) = x, P2(x) = 2 (3x2 − 1), 
1 1P3(x) = 2 (5x3 − 3x), and P4(x) = 8 (35x4 − 30x2 + 3). If n is not a non-negative integer, then the solution 

is an infnite series. 



	

Chapter 7 - The Laplace Transform Example Highlights 

Chapter 7 - The Laplace Transform 
Let f be a function defned for t ≥ 0. The Laplace transform of f (t) is F(s) = L { f (t)} = 

R 
∞ e−st f (t)dt,0 

provided this integral converges. 

Basic Tranforms 
Here are the basic Laplace transformations. 

n!• L {tn} = sn+1 

• L {eat } = 1 
s−a 

k• L {sinkt} = s2+k2 

s• L {coskt} = s2+k2 

k• L {sinhkt} = s2−k2 

s• L {coshkt} = s2−k2 

Solving Initial Value Problems 
Laplace transforms can be used to solve initial value problems about t = 0. One of the huge benefts over 
what we did in chapter 4 is that this solves the equation and fnds the constants at the same time. 

1. Take the Laplace transform, L , of both sides 

2. Solve for Y (s) 

3. Take the inverse Laplace transform, L −1, of both sides 

Combinations of Functions 
There are three types of functions we deal with: polynomial, exponential, and trigonometric functions. If 
your expression involves only one of the three, then use the basic transform for that function. 

If your function contains an exponential and one of the other two types, then fnd the transform of the� 
other type and apply the translation theorem L {eat f (t)} = F(s − a). For example, in L e3t cos4t , 

s s−3you would begin with F(s) = L {cos4t} = and then fnd F(s − 3) = s2+16 (s−3)2+16 . 

If you are unable to fnd a transform of an expression involving a polynomial by one of the other means, 
then you can use the translation theorem L {tn f (t)} = (−1)n 

ds 
dn

n [F(s)]. 

Partial Fractions 
You will need to use partial fractions for many of the problems in this chapter. When the denominators 
are composed of distinct linear factors, you can use the cover-up method. In this method, you cover up a 
factor and then substitute the corresponding root into the rest of the expression to get the coeffcient over 
the factor. 

This shortcut does not work for repeated roots or quadratic factors. In those cases, you may need to use 
undetermined coeffcients to fnd the values. 



Chapter 8 - Systems of Linear First-Order DEs Example Highlights 

Chapter 8 - Systems of Linear First-Order DEs 
Eigenvalues and Eigenvectors 
If X′ = AX is a homogeneous linear frst-order system, then the polynomial equation is the characteristic 
equation det(A − λ I) = 0 and its solutions are the eigenvalues. We want to write a solution as X = Keλ t , 
where K is the associated eigenvector. 

The general solution to a homogeneous linear system is X = c1K1eλ1t + c2K2eλ2t + · · · + cnKneλnt 

If K is an eigenvector corresponding to the complex eigenvalue λ = α + β i, then let B1 = Re(K) and 
B2 = Im(K). The two solutions with real coeffcients are X1 = [B1 cosβ t − B2 sinβ t]eαt and 
X2 = [B1 sinβ t + B2 cosβ t]eαt . 

For a nonhomogeneous system, the general solution becomes X = Xc + Xp and the method of 
undetermined coeffcients or variation of parameters can be used to fnd the particular solution. 

Matrix Exponentials 
AtFor a homogeneous system, we can defne a matrix exponential e so that X = eAt C is a solution to � � � � 

X′ At = I + At + A2 t2 
+ A3 t3 

= AX. For any square matrix of size n, e + · · · , which can be written 2! 3!� �
∞ tk 

At Akas e = ∑ .
k!k=0 

Φ(t) = eAt is a fundamental matrix. 

For nonhomogeneous systems, X′ = AX + F(t), the general solution is X = Xc + Xp where Xc = φ(t)CZ t 
and Xp = Φ(t) Φ

−1(s)F(s)ds. In practice, Φ−1(s) = e−As can be found from eAt by substituting 
t0 

t = −s. 



Chapter 9 - Numerical Solutions of Ordinary DEs Example Highlights 

Chapter 9 - Numerical Solutions of Ordinary DEs 
Euler’s Method 
In chapter 2 (and in Calculus II), we had Euler’s Method, which used a sequence of local linear 
approximations, f (x + ∆x) ≈ f (x)+ ∆y where ∆y was approximated by dy = f ′ (x)∆x, to estimate the 
next value in y. Replacing ∆x by h and switching to the multivariable form dy = f (x,y), we get the dx 
formula used. 

yn+1 = yn + h · f (xn,yn) 

Improved Euler’s Method 
This method estimates the next y value in the sequence using Euler’s method, y ∗ n+1 = yn + h · f (xn,yn), 
and then averages the slopes at the two ends of the interval to fnd a better approximation for the next y. � �1yn+1 = yn + 2 h f (xn,yn)+ f (xn+1,yn 

∗ 
+1) 

Runge-Kutta Methods 
These are generalizations of Euler’s method where the slope f (xn,yn) is replaced by a weighted average 
of the slopes on the interval xn ≤ x ≤ xn+1. That is, yn+1 = yn + h(w1k1 + w2k2 + · · · + wmkm), where the 
weights w are chosen so that they agree with a Taylor series of order m. 

RK1 

The frst-order Runge-Kutta method is actually Euler’s method. Choose k1 = f (xn,yn) and w1 = 1 to get 
yn+1 = yn + hk1. 

RK2 

The second-order Runge-Kutta method chooses k1 = f (xn,yn), k2 = f (xn + h,yn + hk1), and w1 = w2 = 2
1 

to get the improved Euler’s method where yn+1 = yn + 12 h [k1 + k2] 

RK4 

The fourth-order Runge-Kutta method chooses k1 = f (xn,yn), k2 = f (xn + 12 h,yn + 12 hk1), 
1 1 1 1k3 = f (xn + 2 h,yn + 2 hk2), and k4 = f (xn + h,yn + hk3). The weights are w1 = w4 = 6 and w2 = w3 = 3 . 

The result is yn+1 = yn + 6
1 h [k1 + 2k2 + 2k3 + k4]. 
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