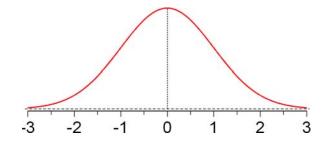
Math 113: 0	Classroom	Activity 5		Name : _						
Materials Scale										
Instructio Do a		he metric sy	ystem							
1. M&I	M/Mars claims that there are grams of candy in each bag.									
2. For y	our bag of	candy, mea	sure the fo	ollowing ar	d recor	d.				
N	Mass of package (g)		Mass of wrapper (g)			Mass of candy (g)				
3. Reco	ord the num	ber of each	color M&	M in your	oag.					
Color	Red	Orange	Yellow	Green	Bl	ue	Brown	Total		
Number										
4. Gath	er the mass	of the cano	ly from all	of the stuc	ents an	d rec	ord them in	the table.		
	ı	bined comp	<u> </u>	· 	<u> </u>			T. (1		
Color Number	Red	Orange	Yellow	Green	Blı	ue	Brown	Total		

We will be working with the claimed mass of the candy at this point. Save the color data for later in the course.


The original claim is that there is a certain amount of candy in each bag. Since a sample of size one is statistically useless, we'll instead test the claim that the mean of our bags is that amount.

6. Summarize the sample

Sample Size, n	Mean, \overline{x}	St. Dev, s

- 7. When performing hypothesis testing, there are assumptions that are made. One of these is that the data is randomly selected. Why might this be a concern for our particular sample?
- 8. Another condition is the normality assumption. That condition is met in one of three ways. Which way is appropriate for our sample?
 - a. The mass of candies is nearly normally distributed.
 - b. The sample size is large enough, so the central limit theorem applies.
 - c. There are more than 10 observed successes and failures.
- 9. If you answered that the mass of the candies was normally distributed (answer a) to the last question, check the normality.
 - a. A histogram of the data (is / is not) unimodal and symmetric?
 - b. There (is / is not) a outlier. If there is, we may need to throw it out.
 - c. A probability plot (does / does not) fall along the line.
 - d. The p-value for the Anderson-Darling normality test (is / is not) below 0.05 (in which case we would reject normality).
 - e. The data (does / does not) appear to be normally distributed.

- 10. Write the original claim symbolically.
- 11. The original claim is the (null / alternative) hypothesis.
- 12. Write the null and alternative hypotheses.
 - a. H_0 :
 - b. H_1 :
- 13. This is a (left tail / right tail / two tail) test.
- 14. The level of significance is $\alpha =$
- 15. When testing a claim about a mean, there are two distributions that can be used. In this problem, we'll use the (normal / Student's t) distribution.
- 16. If you indicated we are using the Student's t distribution, then the degrees of freedom is _____.
- 17. The critical value(s) is/are .
- 18. Illustrate the diagram as follows
 - a. Draw and label vertical line(s) at the critical value(s)
 - b. Shade and label the critical region
 - c. Label the non-critical region
 - d. Label the area in the critical region and non-critical region. Use α notation like $\alpha = 0.05$ or $1 \alpha = 0.05$.
 - e. Label the appropriate regions with "Reject H_0 " and "Retain H_0 ".
 - f. Draw and label a vertical line at the test statistic.
 - g. Label the area beyond the test statistic with the p-value.

19. The formula for the test statistic is $ z = \frac{\overline{x} - \mu}{SD(\overline{x})} $	$t, t = \frac{\overline{x} - \mu}{\operatorname{SE}(\overline{x})}$
---	---

- 20. The test statistic is _____.
- 21. The probability value is ______.
- 22. The % confidence interval is $< \mu <$.
- 23. The test statistic (does / does not) fall in the critical region, so we (reject / retain) the null hypothesis.
- 24. The p-value is (less / greater) than the significance level, so we (reject / retain) the null hypothesis.
- 25. The confidence interval (does / does not) contain the claimed value of the mean, so we (reject / retain) the null hypothesis.
- 26. The decision is to (reject / retain) the null hypothesis.
- 27. There (is / is not) enough evidence to (reject / support) the claim that the mean amount of candy in each bag is _____ grams.
- 28. If you change the alternative hypothesis to be a greater than, the p-value will become _____.
- 29. There (is / is not) enough evidence to (reject / support) the claim that the mean amount of candy in each bag is more than _____ grams.
- 30. Assuming the correct tail is used, a one-tail p-value is always (half/twice) a two-tail p-value.
 - a. If you reject a two-tail test, you will (never / sometimes / always) reject a one-tail test.
 - b. If you reject a one-tail test, you will (never / sometimes / always) reject a two-tail test.